Author:
Yoshida Masahiro,Ishii Kenji,Jarrige Ignace,Watanuki Tetsu,Kudo Kazutaka,Koike Yoji,Kumagai Ken'ichi,Hiraoka Nozomu,Ishii Hirofumi,Tsuei Ku-Ding,Mizuki Jun'ichiro
Abstract
A single-crystal momentum-resolved resonant inelastic X-ray scattering (RIXS) experiment under high pressure using an originally designed diamond anvil cell (DAC) is reported. The diamond-in/diamond-out geometry was adopted with both the incident and scattered beams passing through a 1 mm-thick diamond. This enabled us to cover wide momentum space keeping the scattering angle condition near 90°. Elastic and inelastic scattering from the diamond was drastically reduced using a pinhole placed after the DAC. Measurement of the momentum-resolved RIXS spectra of Sr2.5Ca11.5Cu24O41at the CuK-edge was thus successful. Though the inelastic intensity becomes weaker by two orders than the ambient pressure, RIXS spectra both at the center and the edge of the Brillouin zone were obtained at 3 GPa and low-energy electronic excitations of the cuprate were found to change with pressure.
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献