POWTEX visits POWGEN

Author:

Houben AndreasORCID,Meinerzhagen Yannick,Nachtigall NoahORCID,Jacobs PhilippORCID,Dronskowski RichardORCID

Abstract

The high-intensity time-of-flight (TOF) neutron diffractometer POWTEX for powder and texture analysis is currently being built prior to operation in the eastern guide hall of the research reactor FRM II at Garching close to Munich, Germany. Because of the world-wide 3He crisis in 2009, the authors promptly initiated the development of 3He-free detector alternatives that are tailor-made for the requirements of large-area diffractometers. Herein is reported the 2017 enterprise to operate one mounting unit of the final POWTEX detector on the neutron powder diffractometer POWGEN at the Spallation Neutron Source located at Oak Ridge National Laboratory, USA. As a result, presented here are the first angular- and wavelength-dependent data from the POWTEX detector, unfortunately damaged by a 50g shock but still operating, as well as the efforts made both to characterize the transport damage and to successfully recalibrate the voxel positions in order to yield nonetheless reliable measurements. Also described is the current data reduction process using the PowderReduceP2D algorithm implemented in Mantid [Arnold et al. (2014). Nucl. Instrum. Methods Phys. Res. A, 764, 156–166]. The final part of the data treatment chain, namely a novel multi-dimensional refinement using a modified version of the GSAS-II software suite [Toby & Von Dreele (2013). J. Appl. Cryst. 46, 544–549], is compared with a standard data treatment of the same event data conventionally reduced as TOF diffraction patterns and refined with the unmodified version of GSAS-II. This involves both determining the instrumental resolution parameters using POWGEN's powdered diamond standard sample and the refinement of a friendly-user sample, BaZn(NCN)2. Although each structural parameter on its own looks similar upon comparing the conventional (1D) and multi-dimensional (2D) treatments, also in terms of precision, a closer view shows small but possibly significant differences. For example, the somewhat suspicious proximity of the a and b lattice parameters of BaZn(NCN)2 crystallizing in Pbca as resulting from the 1D refinement (0.008 Å) is five times less pronounced in the 2D refinement (0.038 Å). Similar features are found when comparing bond lengths and bond angles, e.g. the two N—C—N units are less differently bent in the 1D results (173 and 175°) than in the 2D results (167 and 173°). The results are of importance not only for POWTEX but also for other neutron TOF diffractometers with large-area detectors, like POWGEN at the SNS or the future DREAM beamline at the European Spallation Source.

Funder

U.S. Department of Energy, Office of Science

Bundesministerium für Bildung und Forschung

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neutron diffraction: a primer;Zeitschrift für Kristallographie - Crystalline Materials;2024-04-29

2. 10Boron-film-based gas detectors at ESS;Journal of Neutron Research;2024-04-03

3. ICONE – Towards a French HiCANS Neutron Source for materials science and industry;EPJ Web of Conferences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3