Serial electron crystallography: merging diffraction data through rank aggregation

Author:

Smeets StefORCID,Wan WeiORCID

Abstract

Serial electron crystallography is being developed as an alternative way to collect diffraction data on beam-sensitive polycrystalline materials. Merging serial diffraction data from a large number of snapshots is difficult, and the dynamical nature of electron diffraction prevents the use of existing methods that rely on precise measurement of kinematical reflection intensities. To overcome this problem, an alternative method that uses rank aggregation to combine the rankings of relative reflection intensities from a large number of snapshots has been developed. The method does not attempt to accurately model the diffraction intensity, but instead optimizes the most likely ranking of reflections. As a consequence, the problem of scaling individual snapshots is avoided entirely, and requirements for the data quality and precision are low. The method works best when reflections can be fully measured, but the benefit over measuring partial intensities is small. Since there were no experimental data available for testing rank-based merging, the validity of the approach was assessed through a series of simulated serial electron diffraction datasets with different numbers of frames and varying degrees of errors. Several programs have been used to show that these rank-merged simulated data are good enough forab initiostructure determination using several direct methods programs.

Funder

Swiss National Science Foundation

Swedish Research Council (VR)

Swedish Governmental Agency for Innovation Systems (VINNOVA)

Knut & Alice Wallenberg Foundation through the project grant 3DEM-NATUR

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3