Abstract
Neutron powder diffraction (NPD) was employed to further investigate the BaTi1−x
Sn
x
O3 (BTS) system previously studied by X-ray diffraction. The room-temperature phase compositions and crystal structures of BTS samples with x = 0, 0.025, 0.05, 0.07, 0.10, 0.12, 0.15 and 0.20 were refined by the Rietveld method using NPD data. It is well known that barium titanate powder (x = 0) crystallizes in the tetragonal P4mm space group. The crystal structures of the samples with 0.025 ≤ x ≤ 0.07 were refined as mixtures of P4mm and Amm2 phases; those with x = 0.1 and 0.12 show the coexistence of rhombohedral R3m and cubic phases, while the samples with x = 0.15 and 0.20 crystallize in a single cubic Pm{\overline 3}m phase. Temperature-dependent NPD was used to characterize the BaTi0.95Sn0.05O3 sample at 273, 333 and 373 K, and it was found to form single-phase Amm2, P4mm and Pm{\overline 3}m structures at these respective temperatures. The NPD results are in agreement with data obtained by differential scanning calorimetry and dielectric permittivity measurements, which show a paraelectric–ferroelectric transition (associated with structural transition) from Pm{\overline 3}m to P4mm at about 353 K followed by a P4mm to Amm2 phase transition at about 303 K.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献