Abstract
New methods and advanced materials that significantly reduce the background when collecting single-crystal X-ray diffraction data at ultra-low temperatures using a closed-cycle helium refrigerator are presented here. These include a magnetically controlled internal beamstop and a separate internal collimator that together completely remove the scattering contribution to the background from the beryllium vacuum chamber. Additionally, a new radiation shield made from flexible graphite significantly reduces the background and maintains excellent thermal properties. In combination these improvements have led to a sixfold reduction in the average intensity and a 15-fold reduction in peak intensity of the background observed for diffraction experiments conducted with a closed-cycle helium refrigerator. Moreover, access to ultra-low base temperatures, 2.05 K, has been maintained. The design and implementation of these methods are discussed along with a case study of vitamin C to demonstrate the effectiveness of the improvements.
Funder
Engineering and Physical Sciences Research Council
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献