Geometrical-optics formalism to model contrast in dark-field X-ray microscopy

Author:

Poulsen H. F.ORCID,Dresselhaus-Marais L. E.,Carlsen M. A.,Detlefs C.ORCID,Winther G.ORCID

Abstract

Dark-field X-ray microscopy, DFXM, is a new full-field imaging technique that non-destructively maps the structure and local strain inside deeply embedded crystalline elements in three dimensions. In DFXM an objective lens is placed along the diffracted beam to generate a magnified projection image of the local diffracted volume. In this work, a general formalism based on geometrical optics is provided for the diffraction imaging, valid for any crystallographic space group. This allows the simulation of DFXM images based on micro-mechanical models. Example simulations are presented with the formalism, demonstrating how this may be used to design new experiments or to interpret existing ones. In particular, it is shown how modifications to the experimental design may tailor the reciprocal-space resolution function to map specific components of the deformation-gradient tensor. The formalism supports multi-length-scale experiments, as it enables DFXM to be interfaced with 3D X-ray diffraction. To illustrate the use of the formalism, DFXM images are simulated from different contrast mechanisms on the basis of the strain field around a straight dislocation.

Funder

European Research Council, H2020 European Research Council

Danish Agency for Science and Higher Education

U.S. Department of Energy

Lawrence Livermore National Laboratory

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Reference40 articles.

1. Subgrain dynamics during recovery of partly recrystallized aluminum

2. Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis

3. Born, M. & Wolf, E. (2013). Principles of Optics. Cambridge University Press.

4. Sub-surface measurements of the austenite microstructure in response to martensitic phase transformation

5. Chadwick, P. (1999). Continuum Mechanics: Concise Theory and Problems. New York: Dover Publications.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3