Author:
Larsen Andreas Haahr,Arleth Lise,Hansen Steen
Abstract
The structure of macromolecules can be studied by small-angle scattering (SAS), but as this is an ill-posed problem, prior knowledge about the sample must be included in the analysis. Regularization methods are used for this purpose, as already implemented in indirect Fourier transformation and bead-modeling-based analysis of SAS data, but not yet in the analysis of SAS data with analytical form factors. To fill this gap, a Bayesian regularization method was implemented, where the prior information was quantified as probability distributions for the model parameters and included via a functional S. The quantity Q = χ2 + αS was then minimized and the value of the regularization parameter α determined by probability maximization. The method was tested on small-angle X-ray scattering data from a sample of nanodiscs and a sample of micelles. The parameters refined with the Bayesian regularization method were closer to the prior values as compared with conventional χ2 minimization. Moreover, the errors on the refined parameters were generally smaller, owing to the inclusion of prior information. The Bayesian method stabilized the refined values of the fitted model upon addition of noise and can thus be used to retrieve information from data with low signal-to-noise ratio without risk of overfitting. Finally, the method provides a measure for the information content in data, N
g, which represents the effective number of retrievable parameters, taking into account the imposed prior knowledge as well as the noise level in data.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献