Experimental noise in small-angle scattering can be assessed using the Bayesian indirect Fourier transformation

Author:

Larsen Andreas Haahr,Pedersen Martin Cramer

Abstract

Small-angle X-ray and neutron scattering are widely used to investigate soft matter and biophysical systems. The experimental errors are essential when assessing how well a hypothesized model fits the data. Likewise, they are important when weights are assigned to multiple data sets used to refine the same model. Therefore, it is problematic when experimental errors are over- or underestimated. A method is presented, using Bayesian indirect Fourier transformation for small-angle scattering data, to assess whether or not a given small-angle scattering data set has over- or underestimated experimental errors. The method is effective on both simulated and experimental data, and can be used to assess and rescale the errors accordingly. Even if the estimated experimental errors are appropriate, it is ambiguous whether or not a model fits sufficiently well, as the `true' reduced χ2 of the data is not necessarily unity. This is particularly relevant for approaches where overfitting is an inherent challenge, such as reweighting of a simulated molecular dynamics trajectory against small-angle scattering data or ab initio modelling. Using the outlined method, it is shown that one can determine what reduced χ2 to aim for when fitting a model against small-angle scattering data. The method is easily accessible via the web interface BayesApp.

Funder

Novo Nordisk Fonden

Lundbeckfonden

Carlsbergfondet

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3