Reliably distinguishing protein nanocrystals from amorphous precipitate by means of depolarized dynamic light scattering

Author:

Schubert Robin,Meyer Arne,Dierks Karsten,Kapis Svetlana,Reimer Rudolph,Einspahr Howard,Perbandt Markus,Betzel Christian

Abstract

Crystallization of biological macromolecules such as proteins implies several prerequisites, for example, the presence of one or more initial nuclei, sufficient amounts of the crystallizing substance and the chemical potential to provide the free energy needed to force the process. The initiation of a crystallization process itself is a stochastic event, forming symmetrically assembled nuclei over kinetically preferred protein-dense liquid clusters. The presence of a spatial repetitive orientation of macromolecules in the early stages of the crystallization process has so far proved undetectable. However, early identification of the occurrences of unit cells is the key to nanocrystal detection. The optical properties of a crystal lattice offer a potential signal with which to detect whether a transition from disordered to ordered particles occurs, one that has so far not been tested in nanocrystalline applications. The ability of a lattice to depolarize laser light depends on the different refractive indices along different crystal axes. In this study a unique experimental setup is used to detect nanocrystal formation by application of depolarized scattered light. The results demonstrate the successful detection of nano-sized protein crystals at early stages of crystal growth, allowing an effective differentiation between protein-dense liquid cluster formation and ordered nanocrystals. The results are further verified by complementary methods like X-ray powder diffraction, second harmonic generation, ultraviolet two-photon excited fluorescence and scanning electron microscopy.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3