Abstract
In the analysis of neutron scattering measurements of condensed matter structure, it normally suffices to treat the incident and scattered neutron beams as if composed of incoherent distributions of plane waves with wavevectors of different magnitudes and directions that are taken to define an instrumental resolution. However, despite the wide-ranging applicability of this conventional treatment, there are cases, such as specular neutron reflectometry, in which the structural length scales of the scattering object require that the wavefunction of an individual neutron in the beam be described by a spatially localized packet – in particular with respect to the transverse extent of its wavefronts (i.e. normal to the packet's mean direction of propagation). It is shown in the present work that neutron diffraction patterns observed for periodic transmission phase gratings, as well as specular reflection measurements from patterned thin films with repeat units of the order of micrometres, can be accurately described by associating an individual neutron with a wave packet and treating a beam as a collection of independent packets. In these cases, accurate analysis requires that the transverse spatial extent of a neutron packet wavefront be accounted for in addition to the angular divergence of the beam that is characterized by a distribution of packet mean wavevector directions. It is shown how a measure of the effective transverse spatial extent of the neutron packet – over which its wavefronts are of sufficient uniformity to produce coherent scattering – can be determined by employing reference diffraction gratings and patterned thin films of known structure and composition.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献