Modeling the partitioning of amphiphilic molecules and co-solvents in biomembranes

Author:

Tan LuoxiORCID,Smith Micholas Dean,Scott Haden L.,Yahya Ahmad,Elkins James G.,Katsaras JohnORCID,O'Neill Hugh M.,Pingali Sai VenkateshORCID,Smith Jeremy C.,Davison Brian H.,Nickels Jonathan D.ORCID

Abstract

Amphiphilic co-solvents can have a significant impact on the structure, organization and physical properties of lipid bilayers. Describing the mutual impact of partitioning and induced structure changes is therefore a crucial consideration for a range of topics such as anesthesia and other pharmacokinetic effects, as well as microbial solvent tolerance in the production of biofuels and other fermentation products, where molecules such as ethanol, butanol or acetic acid might be generated. Small-angle neutron scattering (SANS) is a key method for studying lipid and polymer bilayer structures, with many models for extracting bilayer structure (thickness, area per lipid etc.) from scattering data in use today. However, the molecular details of co-solvent partitioning are conflated with induced changes to bilayer structure, making interpretation and modeling of the scattering curves a challenge with the existing set of models. To address this, a model of a bilayer structure is presented which invokes a two-term partition constant accounting for the localization of the co-solvent within the bilayer. This model was validated using a series of SANS measurements of lipid vesicles in the presence of the co-solvent tetrahydrofuran (THF), showing several strategies of how to deploy the two-parameter partition constant model to describe scattering data and extract both structure and partitioning information from the data. Molecular dynamics simulations are then used to evaluate assumptions of the model, provide additional molecular scale details and illustrate its complementary nature to the data fitting procedure. This approach results in estimates of the partition coefficient for THF in 1,2-dimyristoyl-sn-glycero-3-phosphocholine at 35°C, along with an estimate of the fraction of THF residing in the hydrophobic core of the membrane. The authors envision that this model will be applicable to a wide range of other bilayer/amphiphile interactions and provide the associated code needed to implement this model as a fitting algorithm for scattering data in the SasView suite.

Funder

U.S. Department of Energy, Office of Biological and Environmental Research

U.S. Department of Energy, Office of Science

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3