Differential evolution and Markov chain Monte Carlo analyses of layer disorder in nanosheet ensembles using total scattering

Author:

Metz Peter C.ORCID,Koch RobertORCID,Misture Scott T.

Abstract

Assemblies of nanosheets are often characterized by extensive layer-position disorder. Coupled with the often minute coherent scattering domain size and relaxation of the nanosheet structure itself, unambiguous interpretation of X-ray and neutron scattering data from such materials is non-trivial. This work demonstrates a general approach towards refinement of layer-disorder information from atomic pair distribution function (PDF) data for materials that span the gap between turbostratism and ordered stacking arrangements. X-ray total scattering data typical of a modern rapid-acquisition PDF instrument are simulated for a hypothetical graphene-like structure using the program DIFFaX, from which atomic PDFs are extracted. Small 1 × 1 × 20 supercell models representing the stacking of discrete layer types are combined to model a continuous distribution of layer-position disorder. Models optimized using the differential evolution algorithm demonstrate improved fit quality over 75 Å when a single mean layer-type model is replaced with a constrained 31-layer-type model. Posterior distribution analyses using the Markov chain Monte Carlo algorithm demonstrate that the influence of layer disorder and finite particle size are correlated. However, the refined mean stacking vectors match well with the generative parameter set.

Funder

National Science Foundation

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3