Effects of Structural and Microstructural Features on the Total Scattering Pattern of Nanocrystalline Materials

Author:

Dengo NicolaORCID,Masciocchi NorbertoORCID,Cervellino AntonioORCID,Guagliardi AntoniettaORCID,Bertolotti FedericaORCID

Abstract

Atomic- and nanometer-scale features of nanomaterials have a strong influence on their chemical and physical properties and a detailed description of these elements is a crucial step in their characterization. Total scattering methods, in real and reciprocal spaces, have been established as fundamental techniques to retrieve this information. Although the impact of microstructural features, such as defectiveness of different kinds, has been extensively studied in reciprocal space, disentangling these effects from size- and morphology-induced properties, upon downsizing, is not a trivial task. Additionally, once the experimental pattern is Fourier transformed to calculate the pair distribution function, the direct fingerprint of structural and microstructural features is severely lost and no modification of the histogram of interatomic distances derived therefrom is clearly discussed nor considered in the currently available protocols. Hereby, starting from atomistic models of a prototypical system (cadmium selenide), we simulate multiple effects on the atomic pair distribution function, obtained from reciprocal space patterns computed through the Debye scattering equation. Size and size dispersion effects, as well as different structures, morphologies, and their interplay with several kinds of planar defects, are explored, aiming at identifying the main (measurable and informative) fingerprints of these features on the total scattering pattern in real and reciprocal spaces, highlighting how, and how much, they become evident when comparing different cases. The results shown herein have general validity and, as such, can be further extended to other classes of nanomaterials.

Funder

Fondazione Cariplo

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3