On the forbidden and the optimum crystallographic variant of rutile in garnet

Author:

Hwang Shyh-Lung,Shen Pouyan,Chu Hao-Tsu,Yui Tzen-Fu

Abstract

In many inclusion–host systems with similar oxygen packing schemes, the optimum crystallographic orientation relationship (COR) between the inclusion and the host is mostly determined by matching the similar oxygen sublattices of the two structures. In contrast, the prediction of the optimum COR or even just the rationalization of the observed COR(s) between an inclusion and host with incompatible oxygen sublattices, like rutile–garnet, is not straightforward. The related documentation for such cases is therefore limited. Given the abundant crystallographic data for the rutile–garnet system acquired by transmission electron microscopy and electron backscatter diffraction methods recently, this problem can now be examined in detail for the critical structural factors dictating the selection of optimum COR in such a structurally complicated system. On the basis of the unconstrained three-dimensional lattice point match and structural polyhedron match calculated for the observed CORs, it becomes clear that the prerequisite of optimum COR for rutile (rt) in garnet (grt) is to have most of their octahedra similarly oriented/inclined in space by aligning 〈103〉rtand 〈111〉grtfor needle extension growth. Further rotation along the 〈103〉rt//〈111〉grtdirection then leads to the energetically most favorable COR-2 variant with a good lattice point match defined by the coincidence site lattice (CSL) and a good topotaxial match of the constituent polyhedra at the CSL points, leaving unfavorable COR-1′ in the forbidden zones. This understanding sheds light not only on hierarchical energetics for the selection of inclusion variants in a complicated inclusion–host system, but also on yet-to-be-explored [UVW]-specific CORs and hetero-tilt boundaries for composite materials in general.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3