Bond length–bond order relations and calculated geometries for some benzenoid aromatics, including phenanthridine. Structures of 5,6-dimethylphenanthridinium triflate, [N-(6-phenanthridinylmethyl)-aza-18-crown-6-κ5 O,O',O'',O''',O''''](picrate-κ2-O,O')potassium, and [N,N'-bis(6-phenanthridinyl-κN-methyl)-7,16-diaza-18-crown-6-κ4 O,O',O'',O''']sodium iodide dichloromethane solvate

Author:

Kiralj R.,Kojić-Prodić B.,Žinić M.,Alihodžić S.,Trinajstić N.

Abstract

The crystal structures of the title compounds are studied in order to investigate the role of novel fluoroionophores in complexation of sodium and potassium. In the potassium complex seven coordination, including the picrate ligand, is encountered. An additional coordination site is via the phenanthridine nitrogen at 3.252 (2) Å (second coordination). The complex is of C 1 symmetry and the aza-18-crown-6 macrocylic ring exhibits a crown-type conformation. The 7,16-diaza-18-crown-6 macrocycle accommodates a six-coordinate sodium with two additional ligands, via nitrogen from phenanthridine units. The complex cation shows a crystallographic twofold symmetry. The macrocycle is not of the crown-type conformation. In both complexes the alkali metals are shifted out of the cavity centres towards a picrate ligand in [N-(6-phenanthridinylmethyl)-aza-18-crown-6-κ5 O,O′,O′′,O′′′,O′′′′](picrate-κ2 O,O′)potassium and the phenanthridine units in [N,N′-bis-(6-phenanthridinyl-κN-methyl)-7,16-diaza-18-crown-6-κ4 O,O′,O′′,O′′′]sodium iodide dichloromethane solvate. Semi-empirical and molecular mechanics calculations based on various force fields were used for the optimization of phenanthridine geometry. The values obtained are compared with experimental data. Valence bond calculations of bond lengths in some benzenoid aromatic systems (C—C bonds in benzenoid hydrocarbons, azabenzenoid hydrocarbons and picrate-like systems; C—N bonds in the azabenzenoids; C—O bonds in the picrate-like systems), as well as some analogous Hückel molecular orbital calculations (C—C bonds in the benzenoid hydrocarbons and the azabenzenoids), were found to agree with the observed values (average differences up to 0.015 Å). These approaches can be used by means of bond length-bond order relations for prediction of bond lengths in the phenanthridine units as well as in the picrate.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3