Neutron diffraction investigation of the temperature dependence of crystal structure and thermal motions of red HgI2

Author:

Schwarzenbach Dieter,Birkedal Henrik,Hostettler Marc,Fischer Peter

Abstract

The structure of, and anisotropic thermal motions in, the red semiconductor tetrahedral layer structure of HgI2 have been studied with neutron powder diffraction as a function of temperature from 10 to 293 K. Average thermal displacement parameters U eq of the two atoms are comparable in size at 10 K, but U eq(Hg) increases considerably faster with temperature than U eq(I), the Hg—I bond being highly non-rigid. The anisotropic displacement tensor U (I) is strongly anisotropic with one term about twice as large as the others, while U (Hg) is nearly isotropic. All displacement tensor elements, except U 22(I), increase faster with temperature than harmonic quantum oscillator curves indicating a softening of the isolated-atom potentials at large amplitudes. A lattice dynamical model provides arguments that the anisotropic thermal motions of I are dominated by a soft mode with a wavevector at the [½ ½ 0] boundary of the Brillouin zone consisting essentially of coupled librations of the HgI4 tetrahedra, and by translations of the entire layer. The large vibration amplitudes of Hg suggest weak Hg–I force constants compared with the I–I force constants, allowing Hg to move quite freely inside the tetrahedra. The libration mode induces dynamic deformations of the Hg—I bond with twice its frequency. This provides a mechanism for the anharmonicity and may explain the lightening of the color from red to orange upon cooling at ca 80 K.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3