Dislocation densities and prevailing slip-system types determined by X-ray line profile analysis in a textured AZ31 magnesium alloy deformed at different temperatures

Author:

Jóni Bertalan,Al-Samman Talal,Chowdhury Sandip Ghosh,Csiszár Gábor,Ungár Tamás

Abstract

Tension experiments were carried out at room temperature, 473 K and 673 K on AZ31-type extruded magnesium alloy samples. The tensile deformation has almost no effect on the typical extrusion texture at any of the investigated temperatures. X-ray diffraction patterns provided by a high-angular-resolution diffractometer were analyzed for the dislocation density and slip activity after deformation to fracture. The diffraction peaks were sorted into two groups corresponding either to the major or to the random texture components in the specimen. The two groups of reflections were evaluated simultaneously as if the two texture components were two different phases. The dislocation densities in the major texture components are found to be always larger than those in the randomly oriented grain populations. The overwhelming fraction of dislocations prevailing in the samples is found to be of 〈a〉 type, with a smaller fraction of 〈c + a〉-type dislocations. The fraction of 〈c〉-type dislocations is always obtained to be zero within experimental error.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3