Affiliation:
1. School of Material Science and Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China
Abstract
The classic molecular dynamics (MD) simulation approach has been used to investigate the microstructure change in polycrystalline magnesium (Mg) during compressive deformation at various temperatures. At low temperatures, there exists a competition between the sliding of Shockley partial dislocation (SPD) and perfect <a> dislocation. Abundant dislocation behaviors such as dislocation bundle and double cross slipping are observed. With a temperature increase, the dislocation sliding is hindered by the newly formed grain boundaries (GBs). The grain reorientation should be the compensatory mechanism for plastic deformation at high temperatures. Furthermore, dynamic recrystallization (DRX) is found at the highest temperature investigated. For all the temperature cases studied, twinning is unsensitive against applied compressive stress. The results of this work may help to understand the temperature effect on the mechanism in polycrystalline Mg under compressive deformation.
Funder
National Natural Science Foundation of China
Shanghai Sailing Program
Natural Science Foundation of Shanghai
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献