Author:
Seitz C.,Weisser M.,Gomm M.,Hock R.,Magerl A.
Abstract
A triple-axis diffractometer for high-energy X-ray diffraction is described. A 450 kV/4.5 kW stationary tungsten X-ray tube serves as the X-ray source. Normally, 220 reflections of thermally annealed Czochralski Si are employed for the monochromator and analyser. Their integrated reflectivity is about ten times higher than the ideal crystal value. With the same material as the sample, and working with the WKα line at 60 keV in symmetric Laue geometry for all axes, the full width at half-maximum (FWHM) values for the longitudinal and transversal resolution are 2.5 × 10−3and 1.1 × 10−4for ΔQ/Q, respectively, and the peak intensity for a non-dispersive setting is 3000 counts s−1. In particular, for a double-axis mode, an energy well above 100 keV from theBremsstrahlungspectrum can be used readily. High-energy X-rays are distinguished by a high penetration power and materials of several centimetre thickness can be analysed. The feasibility of performing experiments with massive sample environments is demonstrated.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献