Structure determination of three furan-substituted benzimidazoles and calculation of π–π and C—H...π interaction energies

Author:

Geiger David K.,Geiger H. Cristina,Deck Jared M.

Abstract

The synthesis and structural characterization of 2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazole [C16H12N2O2, (I)], 2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazol-3-ium chloride monohydrate [C16H13N2O2+·Cl·H2O, (II)] and the hydrobromide salt 5,6-dimethyl-2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazol-3-ium bromide [C18H17N2O2+·Br, (III)] are described. Benzimidazole (I) displays two sets of aromatic interactions, each of which involves pairs of molecules in a head-to-tail arrangement. The first, denoted set (Ia), exhibits both intermolecular C—H...π interactions between the 2-(furan-2-yl) (abbreviated as Fn) and 1-(furan-2-ylmethyl) (abbreviated as MeFn) substituents, and π–π interactions involving the Fn substituents between inversion-center-related molecules. The second, denoted set (Ib), involves π–π interactions involving both the benzene ring (Bz) and the imidazole ring (Im) of benzimidazole. Hydrated salt (II) exhibits N—H...OH2...Cl hydrogen bonding that results in chains of molecules parallel to theaaxis. There is also a head-to-head aromatic stacking of the protonated benzimidazole cations in which the Bz and Im rings of one molecule interact with the Im and Fn rings of adjacent molecules in the chain. Salt (III) displays N—H...Br hydrogen bonding and π–π interactions involving inversion-center-related benzimidazole rings in a head-to-tail arrangement. In all of the π–π interactions observed, the interacting moieties are shifted with respect to each other along the major molecular axis. Basis set superposition energy-corrected (counterpoise method) interaction energies were calculated for each interaction [DFT, M06-2X/6-31+G(d)] employing atomic coordinates obtained in the crystallographic analyses for heavy atoms and optimized H-atom coordinates. The calculated interaction energies are −43.0, −39.8, −48.5, and −55.0 kJ mol−1for (Ia), (Ib), (II), and (III), respectively. For (Ia), the analysis was used to partition the interaction energies into the C—H...π and π–π components, which are 9.4 and 24.1 kJ mol−1, respectively. Energy-minimized structures were used to determine the optimal interplanar spacing, the slip distance along the major molecular axis, and the slip distance along the minor molecular axis for 2-(furan-2-yl)-1H-benzimidazole.

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3