Abstract
The distortion theorem of the bond-valence theory predicts that the mean bond length 〈D〉 increases with increasing deviation of the individual bond lengths from their mean value according to the equation 〈D〉 = (D′ + ΔD), whereD′ is the length found in a polyhedron having equivalent bonds and ΔDis the bond distortion. For a given atom,D′ is expected to be similar from one structure to another, whereas 〈D〉 should vary as a function of ΔD. However, in several crystal structures 〈D〉 significantly varies without any relevant contribution from ΔD. In accordance with bond-valence theory, 〈D〉 variation is described here by a new equation: 〈D〉 = (DRU + ΔDtop + ΔDiso + ΔDaniso + ΔDelec), whereDRUis a constant related to the type of cation and coordination environment, ΔDtopis the topological distortion related to the way the atoms are linked, ΔDisois an isotropic effect of compression (or stretching) in the bonds produced by steric strain and represents the same increase (or decrease) in all the bond lengths in the coordination sphere, ΔDanisois the distortion produced by compression and stretching of bonds in the same coordination sphere, ΔDelecis the distortion produced by electronic effects. If present, ΔDeleccan be combined with ΔDanisobecause they lead to the same kind of distortions in line with the distortion theorem. EachD-index, in the new equation, corresponds to an algebraic expression containing experimental and theoretical bond valences. On the basis of this study, the ΔDindex defined in bond valence theory is a result of both the bond topology and the distortion theorem (ΔD= ΔDtop + ΔDaniso + ΔDelec), andD′ is a result of the compression, or stretching, of bonds (D′ =DRU + ΔDiso). The deficiencies present in the bond-valence theory in explaining mean bond-length variations can therefore be overcome, and the observed variations of 〈D〉 in crystal structures can be described by a self-consistent model.
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献