Electron diffraction data processing with DIALS

Author:

Clabbers Max T. B.,Gruene Tim,Parkhurst James M.,Abrahams Jan PieterORCID,Waterman David G.ORCID

Abstract

Electron diffraction is a relatively novel alternative to X-ray crystallography for the structure determination of macromolecules from three-dimensional nanometre-sized crystals. The continuous-rotation method of data collection has been adapted for the electron microscope. However, there are important differences in geometry that must be considered for successful data integration. The wavelength of electrons in a TEM is typically around 40 times shorter than that of X-rays, implying a nearly flat Ewald sphere, and consequently low diffraction angles and a high effective sample-to-detector distance. Nevertheless, the DIALS software package can, with specific adaptations, successfully process continuous-rotation electron diffraction data. Pathologies encountered specifically in electron diffraction make data integration more challenging. Errors can arise from instrumentation, such as beam drift or distorted diffraction patterns from lens imperfections. The diffraction geometry brings additional challenges such as strong correlation between lattice parameters and detector distance. These issues are compounded if calibration is incomplete, leading to uncertainty in experimental geometry, such as the effective detector distance and the rotation rate or direction. Dynamic scattering, absorption, radiation damage and incomplete wedges of data are additional factors that complicate data processing. Here, recent features of DIALS as adapted to electron diffraction processing are shown, including diagnostics for problematic diffraction geometry refinement, refinement of a smoothly varying beam model and corrections for distorted diffraction images. These novel features, combined with the existing tools in DIALS, make data integration and refinement feasible for electron crystallography, even in difficult cases.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Wellcome Trust

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

Reference60 articles.

1. Arndt, U. W. & Wonacott, A. J. (1977). The Rotation Method in Crystallography. Amsterdam: North-Holland.

2. Bricogne, G. (1986a). Proceedings of the EEC Cooperative Workshop on Position-Sensitive Detector Software (Phases I and II). Paris: LURE.

3. Bricogne, G. (1986b). Proceedings of the EEC Cooperative Workshop on Position-Sensitive Detector Software (Phase III). Paris: LURE.

4. [19] Free R value: Cross-validation in crystallography

5. A practical method to detect and correct for lens distortion in the TEM

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3