Structural studies of hemoglobin from two flightless birds, ostrich and turkey: insights into their differing oxygen-binding properties

Author:

Ramesh PandianORCID,Sundaresan Selvarajan SigamaniORCID,Shobana NagarajORCID,Vinuchakkaravarthy ThangarajORCID,Sivakumar Kandasamy,Yasien SayedORCID,Ponnuswamy Mondikalipudur Nanjappa GounderORCID

Abstract

Crystal structures of hemoglobin (Hb) from two flightless birds, ostrich (Struthio camelus) and turkey (Meleagris gallopova), were determined. The ostrich Hb structure was solved to a resolution of 2.22 Å, whereas two forms of turkey Hb were solved to resolutions of 1.66 Å (turkey monoclinic structure; TMS) and 1.39 Å (turkey orthorhombic structure; TOS). Comparison of the amino-acid sequences of ostrich and turkey Hb with those from other avian species revealed no difference in the number of charged residues, but variations were observed in the numbers of hydrophobic and polar residues. Amino-acid-composition-based computation of various physical parameters, in particular their lower inverse transition temperatures and higher average hydrophobicities, indicated that the structures of ostrich and turkey Hb are likely to be highly ordered when compared with other avian Hbs. From the crystal structure analysis, the liganded state of ostrich Hb was confirmed by the presence of an oxygen molecule between the Fe atom and the proximal histidine residue in all four heme regions. In turkey Hb (both TMS and TOS), a water molecule was bound instead of an oxygen molecule in all four heme regions, thus confirming that they assumed the aqua-met form. Analysis of tertiary- and quaternary-structural features led to the conclusion that ostrich oxy Hb and turkey aqua-met Hb adopt the R-/RH-state conformation.

Funder

Science and Technology Facilities Council

Council of Scientific and Industrial Research, India

University Grants Commission

Applied Molecular Biosciences Unit

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3