On the influence of crystal size and wavelength on native SAD phasing

Author:

Liebschner Dorothee,Yamada Yusuke,Matsugaki Naohiro,Senda Miki,Senda Toshiya

Abstract

Native SAD is an emerging phasing technique that uses the anomalous signal of native heavy atoms to obtain crystallographic phases. The method does not require specific sample preparation to add anomalous scatterers, as the light atoms contained in the native sample are used as marker atoms. The most abundant anomalous scatterer used for native SAD, which is present in almost all proteins, is sulfur. However, the absorption edge of sulfur is at low energy (2.472 keV = 5.016 Å), which makes it challenging to carry out native SAD phasing experiments as most synchrotron beamlines are optimized for shorter wavelength ranges where the anomalous signal of sulfur is weak; for longer wavelengths, which produce larger anomalous differences, the absorption of X-rays by the sample, solvent, loop and surrounding medium (e.g.air) increases tremendously. Therefore, a compromise has to be found between measuring strong anomalous signal and minimizing absorption. It was thus hypothesized that shorter wavelengths should be used for large crystals and longer wavelengths for small crystals, but no thorough experimental analyses have been reported to date. To study the influence of crystal size and wavelength, native SAD experiments were carried out at different wavelengths (1.9 and 2.7 Å with a helium cone; 3.0 and 3.3 Å with a helium chamber) using lysozyme and ferredoxin reductase crystals of various sizes. For the tested crystals, the results suggest that larger sample sizes do not have a detrimental effect on native SAD data and that long wavelengths give a clear advantage with small samples compared with short wavelengths. The resolution dependency of substructure determination was analyzed and showed that high-symmetry crystals with small unit cells require higher resolution for the successful placement of heavy atoms.

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

Reference59 articles.

1. PHENIX: a comprehensive Python-based system for macromolecular structure solution

2. Optimum X-ray wavelength for protein crystallography

3. Blake, C. C. F. & Phillips, D. C. (1962). Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183-191. Vienna: International Atomic Energy Agency.

4. Blundell, T. L. & Johnson, L. N. (1976). Protein Crystallography. New York: Academic Press.

5. The interdependence of wavelength, redundancy and dose in sulfur SAD experiments

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3