Crystallographic Characterization of Sodium Ions in a Bacterial Leucine/Sodium Symporter

Author:

Karasawa Akira1ORCID,Liu Haijiao2,Quick Matthias34ORCID,Hendrickson Wayne A.145,Liu Qun26

Affiliation:

1. Center on Membrane Protein Production and Analysis, New York Structural Biology Center, New York, NY 10027, USA

2. Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA

3. Department of Psychiatry, Columbia University Vagelos College of Physicians & Surgeons and New York State Psychiatric Institute, Area Neuroscience—Division of Molecular Therapeutics, New York, NY 10032, USA

4. Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA

5. Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA

6. Brookhaven National Laboratory, Biology Department, Upton, NY 11973, USA

Abstract

Na+ is the most abundant ion in living organisms and plays essential roles in regulating nutrient uptake, muscle contraction, and neurotransmission. The identification of Na+ in protein structures is crucial for gaining a deeper understanding of protein function in a physiological context. LeuT, a bacterial homolog of the neurotransmitter:sodium symporter family, uses the Na+ gradient to power the uptake of amino acids into cells and has been used as a paradigm for the study of Na+-dependent transport systems. We have devised a low-energy multi-crystal approach for characterizing low-Z (Z ≤ 20) anomalous scattering ions such as Na+, Mg2+, K+, and Ca2+ by combining Bijvoet-difference Fourier syntheses for ion detection and f” refinements for ion speciation. Using the approach, we experimentally identify two Na+ bound near the central leucine binding site in LeuT. Using LeuT microcrystals, we also demonstrate that Na+ may be depleted to study conformational changes in the LeuT transport cycle.

Funder

NIH

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3