The structure of the RBD–E77 Fab complex reveals neutralization and immune escape of SARS-CoV-2

Author:

Zhang Zhichao,Li Xiaoxiong,Xue Ying,Yang Bo,Jia Yuanyuan,Liu Shichao,Lu Defen

Abstract

The spike protein (S) of SARS-CoV-2 is the major target of neutralizing antibodies and vaccines. Antibodies that target the receptor-binding domain (RBD) of S have high potency in preventing viral infection. The ongoing evolution of SARS-CoV-2, especially mutations occurring in the RBD of new variants, has severely challenged the development of neutralizing antibodies and vaccines. Here, a murine monoclonal antibody (mAb) designated E77 is reported which engages the prototype RBD with high affinity and potently neutralizes SARS-CoV-2 pseudoviruses. However, the capability of E77 to bind RBDs vanishes upon encountering variants of concern (VOCs) which carry the N501Y mutation, such as Alpha, Beta, Gamma and Omicron, in contrast to its performance with the Delta variant. To explain the discrepancy, cryo-electron microscopy was used to analyze the structure of an RBD–E77 Fab complex, which reveals that the binding site of E77 on RBD belongs to the RBD-1 epitope, which largely overlaps with the binding site of human angiotensin-converting enzyme 2 (hACE2). Both the heavy chain and the light chain of E77 interact extensively with RBD and contribute to the strong binding of RBD. E77 employs CDRL1 to engage Asn501 of RBD and the Asn-to-Tyr mutation could generate steric hindrance, abolishing the binding. In sum, the data provide the landscape for an in-depth understanding of immune escape of VOCs and rational antibody engineering against emerging variants of SARS-CoV-2.

Funder

Ministry of Science and Technology of the People's Republic of China, National Key Research and Development Program of China

Shanxi Agricultural University

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3