Crystal structures of β-1,4-N-acetylglucosaminyltransferase 2: structural basis for inherited muscular dystrophies

Author:

Yang Jeong YehORCID,Halmo Stephanie M.,Praissman Jeremy,Chapla Digantkumar,Singh Danish,Wells Lance,Moremen Kelley W.ORCID,Lanzilotta William N.

Abstract

The canonical O-mannosylation pathway in humans is essential for the functional glycosylation of α-dystroglycan. Disruption of this post-translational modification pathway leads to congenital muscular dystrophies. The first committed step in the construction of a functional matriglycan structure involves the post-translational modification of α-dystroglycan. This is essential for binding extracellular matrix proteins and arenaviruses, and is catalyzed by β-1,4-N-acetylglucosaminyltransferase 2 (POMGNT2). While another glycosyl transferase, β-1,4-N-acetylglucosaminyltransferase 1 (POMGNT1), has been shown to be promiscuous in extending O-mannosylated sites, POMGNT2 has been shown to display significant primary amino-acid selectivity near the site of O-mannosylation. Moreover, several single point mutations in POMGNT2 have been identified in patients with assorted dystroglycanopathies such as Walker–Warburg syndrome and limb girdle muscular dystrophy. To gain insight into POMGNT2 function in humans, the enzyme was expressed as a soluble, secreted fusion protein by transient infection of HEK293 suspension cultures. Here, crystal structures of POMGNT2 (amino-acid residues 25–580) with and without UDP bound are reported. Consistent with a novel fold and a unique domain organization, no molecular-replacement model was available and phases were obtained through crystallization of a selenomethionine variant of the enzyme in the same space group. Tetragonal (space group P4212; unit-cell parameters a = b = 129.8, c = 81.6 Å, α = γ = β = 90°) crystals with UDP bound diffracted to 1.98 Å resolution and contained a single monomer in the asymmetric unit. Orthorhombic (space group P212121; unit-cell parameters a = 142.3, b = 153.9, c = 187.4 Å, α = γ = β = 90°) crystals were also obtained; they diffracted to 2.57 Å resolution and contained four monomers with differential glycosylation patterns and conformations. These structures provide the first rational basis for an explanation of the loss-of-function mutations and offer significant insights into the mechanics of this important human enzyme.

Funder

National Institutes of Health, National Institute of General Medical Sciences

Publisher

International Union of Crystallography (IUCr)

Subject

Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3