Author:
Heymann Michael,Opthalage Achini,Wierman Jennifer L.,Akella Sathish,Szebenyi Doletha M. E.,Gruner Sol M.,Fraden Seth
Abstract
An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation.
Funder
National Institute of General Medical Sciences
National Science Foundation
National Institutes of Health
Publisher
International Union of Crystallography (IUCr)
Subject
Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献