Abstract
In this work, a series of all-d-metal Heusler alloys, X
2 − x
Mn1 + x
V (X = Pd, Ni, Pt, Ag, Au, Ir, Co; x; = 1, 0), were predicted by first principles. The series can be roughly divided into two categories: XMn2V (Mn-rich type) and X
2MnV (Mn-poor type). Using optimized structural analysis, it is shown that the ground state of these all-d-metal Heusler alloys does not fully meet the site-preference rule for classic full-Heusler alloys. All the Mn-rich type alloys tend to form the L21 structure, where the two Mn atoms prefer to occupy the A (0, 0, 0) and C (0.5, 0.5, 0.5) Wyckoff sites, whereas for the Mn-poor-type alloys, some are stable with XA structures and some are not. The c/a ratio was also changed while maintaining the volume the same as in the cubic state to investigate the possible tetragonal transformation of these alloys. The Mn-rich Heusler alloys have strong cubic resistance; however, all the Mn-poor alloys prefer to have a tetragonal state instead of a cubic phase through tetragonal transformations. The origin of the tetragonal state and the competition between the cubic and tetragonal phases in Mn-poor alloys are discussed in detail. Results show that broader and shallower density-of-states structures at or in the vicinity of the Fermi level lower the total energy and stabilize the tetragonal phases of X
2MnV (X = Pd, Ni, Pt, Ag, Au, Ir, Co). Furthermore, the lack of virtual frequency in the phonon spectra confirms the stability of the tetragonal states of these Mn-poor all-d-metal Heusler alloys. This work provides relevant experimental guidance in the search for possible martensitic Heusler alloys in all-d-metal materials with less Mn and new spintronic and magnetic intelligent materials among all-d-metal Heusler alloys.
Funder
Program for Basic Research and Frontier Exploration of Chongqing City
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
International Union of Crystallography (IUCr)
Subject
Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献