Real-time direct and diffraction X-ray imaging of irregular silicon wafer breakage

Author:

Rack Alexander,Scheel Mario,Danilewsky Andreas N.

Abstract

Fracture and breakage of single crystals, particularly of silicon wafers, are multi-scale problems: the crack tip starts propagating on an atomic scale with the breaking of chemical bonds, forms crack fronts through the crystal on the micrometre scale and ends macroscopically in catastrophic wafer shattering. Total wafer breakage is a severe problem for the semiconductor industry, not only during handling but also during temperature treatments, leading to million-dollar costs per annum in a device production line. Knowledge of the relevant dynamics governing perfect cleavage along the {111} or {110} faces, and of the deflection into higher indexed {hkl} faces of higher energy, is scarce due to the high velocity of the process. Imaging techniques are commonly limited to depicting only the state of a wafer before the crack and in the final state. This paper presents, for the first time,in situhigh-speed crack propagation under thermal stress, imaged simultaneously in direct transmission and diffraction X-ray imaging. It shows how the propagating crack tip and the related strain field can be tracked in the phase-contrast and diffracted images, respectively. Movies with a time resolution of microseconds per frame reveal that the strain and crack tip do not propagate continuously or at a constant speed. Jumps in the crack tip position indicate pinning of the crack tip for about 1–2 ms followed by jumps faster than 2–6 m s−1, leading to a macroscopically observed average velocity of 0.028–0.055 m s−1. The presented results also give a proof of concept that the described X-ray technique is compatible with studying ultra-fast cracks up to the speed of sound.

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic loading platforms coupled to ultra-high speed X-ray imaging at beamline ID19 of the European Synchrotron ESRF;High Pressure Research;2024-07-02

2. Recent developments in MHz radioscopy: Towards the ultimate temporal resolution using storage ring-based light sources;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-01

3. Ultrafast radiographic imaging and tracking: An overview of instruments, methods, data, and applications;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-12

4. Single Bunch X-Ray Phase-Contrast Imaging of Dynamic Tensile Failure in Geomaterials;Journal of Dynamic Behavior of Materials;2022-09-15

5. Brittle fracture studied by ultra-high-speed synchrotron X-ray diffraction imaging;Journal of Applied Crystallography;2022-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3