Temperature-dependent radiation sensitivity and order of 70S ribosome crystals

Author:

Warkentin Matthew,Hopkins Jesse B.,Haber Jonah B.,Blaha Gregor,Thorne Robert E.

Abstract

All evidence to date indicates that atT= 100 K all protein crystals exhibit comparable sensitivity to X-ray damage when quantified using global metrics such as change in scalingBfactor or integrated intensityversusdose. This is consistent with observations in cryo-electron microscopy, and results because nearly all diffusive motions of protein and solvent, including motions induced by radiation damage, are frozen out. But how do the sensitivities of different proteins compare at room temperature, where radiation-induced radicals are free to diffuse and protein and lattice structures are free to relax in response to local damage? It might be expected that a large complex with extensive conformational degrees of freedom would be more radiation sensitive than a small, compact globular protein. As a test case, the radiation sensitivity of 70S ribosome crystals has been examined. AtT= 100 and 300 K, the half doses are 64 MGy (at 3 Å resolution) and 150 kGy (at 5 Å resolution), respectively. The maximum tolerable dose in a crystallography experiment depends upon the initial or desired resolution. When differences in initial data-set resolution are accounted for, the former half dose is roughly consistent with that for model proteins, and the 100/300 K half-dose ratio is roughly a factor of ten larger. 70S ribosome crystals exhibit substantially increased resolution at 100 K relative to 300 K owing to cooling-induced ordering and not to reduced radiation sensitivity and slower radiation damage.

Publisher

International Union of Crystallography (IUCr)

Subject

General Medicine,Structural Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3