Room-temperature scavengers for macromolecular crystallography: increased lifetimes and modified dose dependence of the intensity decay

Author:

Barker Adam I.,Southworth-Davies Robert J.,Paithankar Karthik S.,Carmichael Ian,Garman Elspeth F.

Abstract

The advent of highly intense wiggler and undulator beamlines has reintroduced the problem of X-ray radiation damage in protein crystals even at cryogenic temperatures (100 K). Although cryocrystallography can be utilized for the majority of protein crystals, certain macromolecular crystals (e.g. of viruses) suffer large increases in mosaicity upon flash cooling and data are still collected at room temperature (293 K). An alternative mechanism to cryocooling for prolonging crystal lifetime is the use of radioprotectants. These compounds are able to scavenge the free radical species formed upon X-ray irradiation which are thought to be responsible for part of the observed damage. Three putative radioprotectants, ascorbate, 1,4-benzoquinone and 2,2,6,6-tetramethyl-4-piperidone (TEMP), were tested for their ability to prolong lysozyme crystal lifetimes at 293 K. Plots of relative summed intensity against dose were used as a metric to assess radioprotectant ability: ascorbate and 1,4-benzoquinone appear to be effective, whereas studies on TEMP were inconclusive. Ascorbate, which scavenges OH^{\bullet} radicals (k OH = 8 × 109M −1 s−1) and electrons with a lower rate constant (k e-(aq) = 3.0 × 108M −1 s−1), doubled the crystal dose tolerance, whereas 1,4-benzoquinone, which also scavenges both OH^{\bullet} radicals (k OH = 1.2 × 109M −1 s−1) and electrons (k e-(aq) = 1.2 × 1010M −1 s−1), offered a ninefold increase in dose tolerance at the dose rates used. Pivotally, these preliminary results on a limited number of samples show that the two scavengers also induced a striking change in the dose dependence of the intensity decay from a first-order to a zeroth-order process.

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3