Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data

Author:

Nishiyama ToshiyukiORCID,Niozu Akinobu,Bostedt Christoph,Ferguson Ken R.,Sato Yuhiro,Hutchison Christopher,Nagaya KiyonobuORCID,Fukuzawa Hironobu,Motomura Koji,Wada Shin-ichiORCID,Sakai Tsukasa,Matsunami Kenji,Matsuda Kazuhiro,Tachibana Tetsuya,Ito Yuta,Xu Weiqing,Mondal Subhendu,Umemoto Takayuki,Nicolas Christophe,Miron CatalinORCID,Kameshima Takashi,Joti Yasumasa,Tono Kensuke,Hatsui Takaki,Yabashi Makina,Ueda KiyoshiORCID

Abstract

With the emergence of X-ray free-electron lasers, it is possible to investigate the structure of nanoscale samples by employing coherent diffractive imaging in the X-ray spectral regime. In this work, we developed a refinement method for structure reconstruction applicable to low-quality coherent diffraction data. The method is based on the gradient search method and considers the missing region of a diffraction pattern and the small number of detected photons. We introduced an initial estimate of the structure in the method to improve the convergence. The present method is applied to an experimental diffraction pattern of an Xe cluster obtained in an X-ray scattering experiment at the SPring-8 Angstrom Compact free-electron LAser (SACLA) facility. It is found that the electron density is successfully reconstructed from the diffraction pattern with a large missing region, with a good initial estimate of the structure. The diffraction pattern calculated from the reconstructed electron density reproduced the observed diffraction pattern well, including the characteristic intensity modulation in each ring. Our refinement method enables structure reconstruction from diffraction patterns under difficulties such as missing areas and low diffraction intensity, and it is potentially applicable to the structure determination of samples that have low scattering power.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

RIKEN

National Natural Science Foundation of China

U.S. Department of Energy, Office of Science

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3