New leads for fragment-based design of rhenium/technetium radiopharmaceutical agents

Author:

Brink Alice,Helliwell John R.ORCID

Abstract

Multiple possibilities for the coordination offac-[Re(CO)3(H2O)3]+to a protein have been determined and include binding to Asp, Glu, Arg and His amino-acid residues as well as to the C-terminal carboxylate in the vicinity of Leu and Pro. The large number of rhenium metal complex binding sites that have been identified on specific residues thereby allow increased target identification for the design of future radiopharmaceuticals. The core experimental concept involved the use of state-of-art tuneable synchrotron radiation at the Diamond Light Source to optimize the rhenium anomalous dispersion signal to a large value (f′′ of 12.1 electrons) at itsLIabsorption edge with a selected X-ray wavelength of 0.9763 Å. At the Cu Kα X-ray wavelength (1.5418 Å) thef′′ for rhenium is 5.9 electrons. The expected peak-height increase owing to the optimization of the Ref′′ was therefore 2.1. This X-ray wavelength tuning methodology thereby showed the lower occupancy rhenium binding sites as well as the occupancies of the higher occupancy rhenium binding sites.

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3