Distinct pathways of solid-to-solid phase transitions induced by defects: the case of DL-methionine

Author:

Shi Genpei,Li Si,Shi PengORCID,Gong JunboORCID,Zhang Mingtao,Tang WeiweiORCID

Abstract

Understanding of solid-to-solid phase transition mechanisms in polymorphic systems is of critical importance for rigorous control over polymorph purity in the pharmaceutical industry to achieve the desired bioavailability and efficacy of drugs. Ubiquitous defects in crystals may play an important role in the pathways of phase transitions. However, such effects remain poorly understood. Here, the effects of crystal defects on the solid-to-solid phase transformations between DL-methionine polymorphs α and β are investigated by means of experimental and computational approaches. Thermal analyses of polycrystalline powders show two endothermic peaks in the α-to-β phase transition (and two exothermic peaks for the reverse transition), in contrast with one thermal event observed for single crystals. Variable-temperature 1D and 2D Raman spectra, as well as powder X-ray diffraction patterns, reveal the appearance of two peaks that can attributed to a two-step phase transition, and the extent of the second-step phase transition increases with milling time (or defect density). Quantification of transition kinetics unveils a remarkably higher energy barrier in the second-step phase transition than in the first, proceeding by the cooperative molecular motion pathway. The good linear fitting on the kinetic data by the Jeziorny model suggests that the second-step transition follows the nucleation and growth mechanism. Molecular dynamics simulations were also conducted to understand the role of crystal defects in the solid-state phase transition by tracking the atomic distribution and hydrogen bond lifetime during the transition. It was found that the increasing defect density hinders the propagation of cooperative molecular motion, leading to a combined transition mechanism involving both cooperative motion and nucleation and growth. This study highlights the significant impact of crystal defects on solid-state phase transitions, and the two-step transition mechanism postulated may be universal given the ubiquitous presence of defects in crystalline materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Open Foundation of State Key Laboratory of Chemical Engineering

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3