Diffuse neutron scattering in benzil, C14D10O2, using the time-of-flight Laue technique

Author:

Welberry T. R.,Goossens D. J.,David W. I. F.,Gutmann M. J.,Bull M. J.,Heerdegen A. P.

Abstract

Diffuse neutron scattering data have been recorded for the molecular crystald-benzil, C14D10O2, using the time-of-flight Laue technique on the SXD and PRISMA instruments at ISIS. Using SXD it was possible to access a large fraction of the total three-dimensional reciprocal space out to aQvalue of 15 Å−1, using only four individual exposures and by making use of the \bar{3}m Laue symmetry of the crystal. By segregating the scattered data according to the incident neutron energy used, patterns were obtained from those neutrons in the range of ∼20 meV to 150 meV, which showed little sign of inelastic effects and so could be compared with previously analysed X-ray data. For neutron energies of <20 meV, interesting inelastic effects were observed, which have been used to obtain an estimate for the energy of phonons associated with a vibrational mode in which an intramolecular mode couples to a low-energy shearing motion of the hydrogen-bonded network linking neighbouring molecules. The estimated value of 8.95 cm−1(1.11 meV) for this mode is less than the lowest energy mode reported from spectroscopic measurements for hydrogenous benzil (∼16 cm−1). A model previously derived from analysis of X-ray data observed over a limited range ofQhas been used to calculate neutron patterns over the fullQrange. Comparison with the present neutron data has shown that while the model gives a good description of the form of the diffuse patterns, the magnitudes of the atomic displacements are underestimated by a factor of ∼2.25.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3