Author:
Ferrari Claudio,Germini Fabrizio,Korytár Dusan,Mikulík Petr,Peverini Luca
Abstract
The width and integrated intensity of the 220 X-ray double-diffraction profile and the shift of the Bragg condition due to refraction have been measured in a channel-cut Ge crystal in an angular range near the critical angle of total external reflection. The Bragg angle and incidence condition were varied by changing the X-ray energy. In agreement with the extended dynamical theory of X-ray diffraction, the integrated intensity of the double diffraction remained almost constant, even for the grazing-incidence condition very close to the critical angle for total external reflection. A broadening of the diffraction profile not predicted by the extended theory of X-ray diffraction was observed when the Bragg condition was at angles of incidence lower than 0.6°. Plane wave topographs revealed a contrast that could be explained by a slight residual crystal surface undulation of 0.3° due to etching to remove the cutting damage and the increasing effect of refraction at glancing angles close to the critical angle. These findings confirm that highly asymmetric channel-cut Ge crystals can also work as efficient monochromators or image magnifiers at glancing angles close to the critical angle, the main limitation being the crystal surface preparation.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献