Author:
Levine Lyle E.,Geantil Peter,Larson Bennett C.,Tischler Jonathan Z.,Kassner Michael E.,Liu Wenjun
Abstract
Dislocation structures in deformed metals produce broad asymmetric diffraction line profiles. During analysis, these profiles are generally separated into two nearly symmetric subprofiles corresponding to diffraction by dislocation cell walls and cell interiors. These subprofiles are then interpreted using complex models of dislocation-based line broadening. Until now, it has not been possible to test the many assumptions that are made in such an analysis. Here, depth-resolved microbeam diffraction was used to measure diffraction line profiles from numerous individual dislocation cell walls and cell interiors in a heavily deformed Cu single crystal. Summing these profiles directly constructed the cell-interior and cell-wall subprofiles that have been approximated in the line profile analysis literature for the past 30 years. Direct comparison between the reconstructed subprofiles and the macroscopic asymmetric line profile from the same sample allows the first direct tests of many of the assumptions that have been used for interpreting these X-ray measurements.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献