An optimum design for a time-of-flight neutron diffractometer for measuring engineering stresses

Author:

Johnson Michael W.,Daymond Mark R.

Abstract

A method is described for optimizing the design of a time-of-flight neutron diffractometer designed to measure lattice parameters. Such diffractometers are now used extensively by engineers and materials scientists for measuring strain within metallic and ceramic components. The method presented relies on the identification of a figure of merit (FOM) that accurately describes the performance of such an instrument. For the first time, an FOM for an instrument exhibiting non-Gaussian peak shapes is described, and the methods by which this FOM may be maximized are described. Although the instrument described is based on the time-of-flight technique, the FOM derived may equally well be used to optimize a reactor-based instrument. While measuring peak position is a straightforward example, it is shown that similar figures of merit may be found for other peak shape parameters, and thus other types of instrumentation.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Final physical design of engineering materials diffractometer at the China spallation neutron source;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-06

2. Modelling of The New Engineering Diffractometer eMAP at ISIS Target Station 2;EPJ Web of Conferences;2023

3. On the diffraction peak amplitude measured by neutron reverse time-of-flight (RTOF) diffractometry;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2022-08

4. Residual Stress Analysis in Large Water Quenched Stainless Steels;Lecture Notes in Mechanical Engineering;2022

5. Focusing neutron guide design for Engineering Materials Diffractometer at CSNS;Journal of Instrumentation;2021-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3