Author:
E J. C.,Cai Y.,Zhong Z. Y.,Tang M. X.,Zhu X. R.,Wang L.,Luo S. N.
Abstract
A methodology is presented to characterize the crystallographic texture of atomic configurations on the basis of Euler angles. Texture information characterized by orientation map, orientation distribution function, texture index, pole figure and inverse pole figure is obtained. The paper reports the construction and characterization of the texture of nanocrystalline configurations with different grain numbers, grain sizes and percentages of preferred orientation. The minimum grain number for texture-free configurations is ∼2500. The effect of texture on deducing grain size from simulated X-ray diffraction curves is also explored as an application case of texture analysis. In addition, molecular dynamics simulations are performed on initially texture-free nanocrystalline Ta under shock-wave loading, which shows a 〈001〉 + 〈111〉 double fiber texture after shock-wave compression.
Funder
National Natural Science Foundation of China
Science Challenge Project of China
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献