Roughness replication in neutron supermirrors

Author:

Veres Tamás,Sajti SzilárdORCID,Cser László,Bálint Szabolcs,Bottyán László

Abstract

Neutron supermirrors (SMs), the major components of neutron optical devices, are depth-graded d-spacing multilayers of several hundreds to several thousands of bilayers. The interface roughness is a major factor in the reflectivity of multilayers. This influence is especially significant if the number of bilayers is large. In this work, the interface roughness and its correlations were studied in DC-sputtered Ni–Ti neutron supermirrors. Detector scans were carried out to observe off-specular neutron scattering in selected regions of the q space from (increasing bilayer thickness) normal- and (decreasing bilayer thickness) reverse-layer-sequence SMs. In-plane and out-of-plane roughness correlations are manifested in diffuse scatter plateaus and peaks which are interpreted in terms of resonant diffuse scattering. Distorted wave Born approximation simulations quantitatively reproduce the characteristic features of the measured detector scans with reasonable roughness correlation parameters, i.e. in-plane and out-of-plane correlation lengths, common interface roughness, and Hurst parameters. The different character of resonant diffuse scattering from normal- and reverse-layer-sequence SMs is qualitatively explained and systematized using quasi-kinematical considerations in terms of material and SM parameters. The total off-specular intensity of the supermirrors was found to be non-monotonic with respect to the specular reflectivity at the corresponding angle of incidence.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3