Enhanced X-ray diffraction of in vivo-grown μNS crystals by viscous jets at XFELs

Author:

Nagaratnam Nirupa,Tang Yanyang,Botha Sabine,Saul Justin,Li ChufengORCID,Hu Hao,Zaare Sahba,Hunter Mark,Lowry David,Weierstall Uwe,Zatsepin NadiaORCID,Spence John C. H.,Qiu Ji,LaBaer Joshua,Fromme Petra,Martin-Garcia Jose M.

Abstract

μNS is a 70 kDa major nonstructural protein of avian reoviruses, which cause significant economic losses in the poultry industry. They replicate inside viral factories in host cells, and the μNS protein has been suggested to be the minimal viral factor required for factory formation. Thus, determining the structure of μNS is of great importance for understanding its role in viral infection. In the study presented here, a fragment consisting of residues 448–605 of μNS was expressed as an EGFP fusion protein in Sf9 insect cells. EGFP-μNS(448–605) crystallization in Sf9 cells was monitored and verified by several imaging techniques. Cells infected with the EGFP-μNS(448–605) baculovirus formed rod-shaped microcrystals (5–15 µm in length) which were reconstituted in high-viscosity media (LCP and agarose) and investigated by serial femtosecond X-ray diffraction using viscous jets at an X-ray free-electron laser (XFEL). The crystals diffracted to 4.5 Å resolution. A total of 4227 diffraction snapshots were successfully indexed into a hexagonal lattice with unit-cell parameters a = 109.29, b = 110.29, c = 324.97 Å. The final data set was merged and refined to 7.0 Å resolution. Preliminary electron-density maps were obtained. While more diffraction data are required to solve the structure of μNS(448–605), the current experimental strategy, which couples high-viscosity crystal delivery at an XFEL with in cellulo crystallization, paves the way towards structure determination of the μNS protein.

Funder

Flinn Foundation

National Science Foundation, BioXFEL Science and Technology Center

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,Genetics,Biochemistry,Structural Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3