Crystal structures and kinetic analyses ofN-acetylmannosamine-6-phosphate 2-epimerases fromFusobacterium nucleatumandVibrio cholerae

Author:

Manjunath Lavanyaa,Guntupalli Sai Rohit,Currie Michael J.,North Rachel A.ORCID,Dobson Renwick C. J.,Nayak Vinod,Subramanian RamaswamyORCID

Abstract

Sialic acids are nine-carbon sugars that are found abundantly on the cell surfaces of mammals as glycoprotein or glycolipid complexes. Several Gram-negative and Gram-positive bacteria have the ability to scavenge and catabolize sialic acids to use as a carbon source. This gives them an advantage in colonizing sialic acid-rich environments. The genes of the sialic acid catabolic pathway are generally present as the operonnanAKE. The third gene in the operon encodes the enzymeN-acetylmannosamine-6-phosphate 2-epimerase (NanE), which catalyzes the conversion ofN-acetylmannosamine 6-phosphate toN-acetylglucosamine 6-phosphate, thus committing it to enter glycolysis. The NanE enzyme belongs to the isomerase class of enzymes possessing the triose phosphate isomerase (TIM) barrel fold. Here, comparative structural and functional characterizations of the NanE epimerases from two pathogenic Gram-negative bacteria,Fusobacterium nucleatum(Fn) andVibrio cholerae(Vc), have been carried out. Structures of NanE from Vc (VcNanE) with and without ligand bound have been determined to 1.7 and 2.7 Å resolution, respectively. The structure of NanE from Fn (FnNanE) has been determined to 2.2 Å resolution. The enzymes show kinetic parameters that are consistent with those ofClostridium perfringensNanE. These studies allowed an evaluation of whether NanE may be a good drug target against these pathogenic bacteria.

Funder

Department of Biotechnology, Government of India

Marsden Fund

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,Genetics,Biochemistry,Structural Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3