Abstract
N-Acetyl-D-neuraminic acid lyase (NanA) catalyzes the breakdown of sialic acid (Neu5Ac) toN-acetyl-D-mannosamine (ManNAc) and pyruvate. NanA plays a key role in Neu5Ac catabolism in many pathogenic and bacterial commensals where sialic acid is available as a carbon and nitrogen source. Several pathogens or commensals decorate their surfaces with sialic acids as a strategy to escape host innate immunity. Catabolism of sialic acid is key to a range of host–pathogen interactions. In this study, atomic resolution structures of NanA fromFusobacterium nucleatum(FnNanA) in ligand-free and ligand-bound forms are reported at 2.32 and 1.76 Å resolution, respectively. F. nucleatumis a Gram-negative pathogen that causes gingival and periodontal diseases in human hosts. Like other bacterialN-acetylneuraminate lyases, FnNanA also shares the triosephosphate isomerase (TIM)-barrel fold. As observed in other homologous enzymes, FnNanA forms a tetramer. In order to characterize the structure–function relationship, the steady-state kinetic parameters of the enzyme are also reported.
Funder
Department of Biotechnology, Government of India
Publisher
International Union of Crystallography (IUCr)
Subject
Condensed Matter Physics,Genetics,Biochemistry,Structural Biology,Biophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献