Author:
Bodner Mark,Bourret Emmanuel,Patera Jiri,Szajewska Marzena
Abstract
Exact icosahedral symmetry of C60is viewed as the union of 12 orbits of the symmetric subgroup of order 6 of the icosahedral group of order 120. Here, this subgroup is denoted byA2because it is isomorphic to the Weyl group of the simple Lie algebraA2. Eight of theA2orbits are hexagons and four are triangles. Only two of the hexagons appear as part of the C60surface shell. The orbits form a stack of parallel layers centered on the axis of C60passing through the centers of two opposite hexagons on the surface of C60. By inserting into the middle of the stack twoA2orbits of six points each and twoA2orbits of three points each, one can match the structure of C78. Repeating the insertion, one gets C96; multiple such insertions generate nanotubes of any desired length. Five different polytopes with 78 carbon-like vertices are described; only two of them can be augmented to nanotubes.
Publisher
International Union of Crystallography (IUCr)
Subject
Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献