On symmetry breaking of dual polyhedra of non-crystallographic group H 3

Author:

Myronova Mariia

Abstract

The study of the polyhedra described in this paper is relevant to the icosahedral symmetry in the assembly of various spherical molecules, biomolecules and viruses. A symmetry-breaking mechanism is applied to the family of polytopes {\cal V}_{H_{3}}(\lambda) constructed for each type of dominant point λ. Here a polytope {\cal V}_{H_{3}}(\lambda) is considered as a dual of a {\cal D}_{H_{3}}(\lambda) polytope obtained from the action of the Coxeter group H 3 on a single point \lambda\in{\bb R}^{3}. The H 3 symmetry is reduced to the symmetry of its two-dimensional subgroups H 2, A 1 × A 1 and A 2 that are used to examine the geometric structure of {\cal V}_{H_{3}}(\lambda) polytopes. The latter is presented as a stack of parallel circular/polygonal orbits known as the `pancake' structure of a polytope. Inserting more orbits into an orbit decomposition results in the extension of the {\cal V}_{H_{3}}(\lambda) structure into various nanotubes. Moreover, since a {\cal V}_{H_{3}}(\lambda) polytope may contain the orbits obtained by the action of H 3 on the seed points (a, 0, 0), (0, b, 0) and (0, 0, c) within its structure, the stellations of flat-faced {\cal V}_{H_{3}}(\lambda) polytopes are constructed whenever the radii of such orbits are appropriately scaled. Finally, since the fullerene C20 has the dodecahedral structure of {\cal V}_{H_{3}}(a,0,0), the construction of the smallest fullerenes C24, C26, C28, C30 together with the nanotubes C20+6N , C20+10N is presented.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3