Revisited relativistic Dirac–Hartree–Fock X-ray scattering factors. I. Neutral atoms with Z = 2–118

Author:

Olukayode Shiroye,Froese Fischer Charlotte,Volkov Anatoliy

Abstract

In this first of a series of publications, the X-ray scattering factors for neutral atoms are revisited. Using the recently developed DBSR_HF program [Zatsarinny & Froese Fischer (2016). Comput. Phys. Comm. 202, 287–303] the fully relativistic Dirac–Hartree–Fock ground-state wavefunctions for all atoms with Z = 2–118 (He–Og) have been calculated using the extended average level scheme and including both the Breit interaction correction to the electronic motion due to magnetic and retardation effects, and the Fermi distribution function for the description of the nuclear charge density. The comparison of our wavefunctions with those obtained in several previous studies in terms of the total and orbital (spinor) electronic energies, and a number of local and integrated total and orbital properties, confirmed the quality of the generated wavefunctions. The employed dense radial grid combined with the DBSR_HF's B-spline representation of the relativistic one-electron orbitals allowed for a precise integration of the X-ray scattering factors using a newly developed Fortran program SF. Following the established procedure [Maslen et al. (2006). International Tables for Crystallography, Vol. C, Section 6.1.1, pp. 554–589], the resulting X-ray scattering factors have been interpolated in the 0 ≤ sin θ/λ ≤ 2 Å−1 and 2 ≤ sin θ/λ ≤ 6 Å−1 ranges using the recommended analytical functions with both the four- (which is a current convention) and five-term expansions. An exhaustive comparison of the newly generated X-ray scattering factors with the International Union of Crystallography recommended values and those from a number of previous studies showed an overall good agreement and allowed identification of a number of typos and inconsistencies in the recommended quantities. A detailed analysis of the results suggests that the newly derived values may represent an excellent compromise among all the previous studies. The determined conventional interpolating functions for the two sin θ/λ intervals show, on average, the same accuracy as the recommended parametrizations. However, an extension of each expansion by only a single term provides a significant improvement in the accuracy of the interpolated values for an overwhelming majority of the atoms. As such, an updated set of the fully relativistic X-ray scattering factors and the interpolating functions for neutral atoms with Z = 2–118 can be easily incorporated into the existing X-ray diffraction software with only minor modifications. The outcomes of the undertaken research should be of interest to members of the crystallographic community who push the boundaries of the accuracy and precision of X-ray diffraction studies.

Publisher

International Union of Crystallography (IUCr)

Subject

Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biochemistry,Structural Biology

Reference75 articles.

1. Perspective: Relativistic effects

2. Applications ofB-splines in atomic and molecular physics

3. Bevington, P. & Robinson, D. K. (2002). Data Reduction and Error Analysis for the Physical Sciences, 3rd ed. New York, NY: McGraw-Hill.

4. Package for Calculating with B-Splines

5. A Limited Memory Algorithm for Bound Constrained Optimization

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3