Mechanism of the first-order phase transition of an acylurea derivative: observation of intermediate stages of transformation with a detailed temperature-resolved single-crystal diffraction method

Author:

Hashizume Daisuke,Miki Naoko,Yamazaki Toshiyuki,Aoyagi Yosuke,Arisato Tomokuni,Uchiyama Hiroki,Endo Tadashi,Yasui Masanori,Iwasaki Fujiko

Abstract

The process of the first-order solid-to-solid phase transition of 1-ethyl-3-(4-methylpentanoyl)urea (1) was observed by means of a detailed temperature-resolved single-crystal diffraction method, which resembles watching a series of stop-motion photographs. The transition consists of two elementary processes, one supramolecular and the other molecular. Crystal structures from before and after the phase transition are isostructural. The straight-ribbon-like one-dimensional hydrogen-bonding structure is formed and stacked to form a molecular layer. The geometry of the layer is retained during the phase transition. The relative position of the layer with its neighbours, on the other hand, changes gradually with increasing temperature. The change is accelerated at the temperature representing the start of the endotherm seen in the DSC curves of (1). The structural variation yields void space between the neighbouring layers. When the void space grows enough that the crystal is unstable, the 3-methylbutyl group on the last of the molecules turns into a disordered structure with drastic conformational changes to fill up the void space. The phase transition process is well supported with simple force-field calculations. A crystal of 1-(4-methylpentanoyl)-3-propylurea (2), which shows no solid-to-solid phase transitions, was also analysed by the same method for comparison.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3