Molecular arrangements in crystals of racemic and enantiopure forms of N-carbamoyl-2-phenylbutyramide and 2-phenylbutyramide: differences and similarities

Author:

Krivoshein Arcadius V.12,Lindeman Sergey V.3,Bentum Samuel2,Averkiev Boris B.2,Sena Victoria2,Timofeeva Tatiana V.2

Affiliation:

1. Department of Physical and Applied Sciences , University of Houston – Clear Lake , 2700 Bay Area Boulevard , Houston, TX 77058 , USA

2. Department of Chemistry , New Mexico Highlands University , P.O. Box 9000 , Las Vegas, NM 87701 , USA

3. Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee, WI 53201 , USA

Abstract

Abstract As solid drugs may be regarded as “pharmaceutical materials”, molecular pharmaceutics of such drugs is expected to benefit from application of materials science concepts. In this paper, we used a structural chemistry approach to explain the dramatic difference in solubility between two structurally related antiepileptic drugs, N-carbamoyl-2-phenylbutyramide (NC2PBA) and 2-phenylbutyramide (2PBA). Since both of these compounds are chiral, we chromatographically separated the enantiomers and examined them along with the racemic forms. A combination of experimental (single-crystal X-ray diffraction, IR spectroscopy) and computational (crystal lattice energy calculations, Hirshfeld surface analysis) techniques was employed to determine the structural differences between these two compounds in the crystalline state. We found that while NC2PBA and 2PBA have similar molecular packing arrangements, the former compound is distinguished by a more extensive network of hydrogen bonds. Thus, the higher density, higher melting point, and lower solubility of crystalline NC2PBA compared to crystalline 2PBA may be largely explained by the differences in hydrogen bonding. We also found that for each of these compounds there are no major differences in molecular packing (and, correspondingly, in crystal lattice energies) between racemic and enantiopure forms.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3