Can Physics Help Athletes Run Faster on a Curve Track

Author:

Han Katherine

Abstract

Sprinting on a curve is slower than sprinting on a straight lane. To explain this phenomenon, various models based on a combination of biological and physical assumptions have been developed. These models depend on detailed parameters that significantly differ for each individual athlete. Here, we propose a general model solely based on kinetic theory of physics that can be universally applied to all athletes. By solving the force and torque equations for the running speed of the athletes on a curved track, we analyzed sprinting speeds between the inner and outer curves. Applying the data from the classic works into our models, we find that our results and conclusions are mostly aligned with the previous works while our approach is built on the accurate physics principles and contains no uncontrollable parameters. Further we show how runners can alleviate the centrifugal effect of curved track by tilting their bodies and we quantitatively determine the optimal tilting angle for a given curvature.

Publisher

IOR Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3